
CS 244 Project Report: Reproducing Copa
Sawyer Birnbaum, Nadin El-Yabroudi

Stanford University
sawyerb@stanford.edu,nadin@stanford.edu

ABSTRACT
We reproduce key findings from Copa: Practical Delay-Based Con-
gestion Control, which presents a general purpose delay-based con-
gestion control algorithm called Copa. In keeping with the original
paper, we find that Copa achieves a higher flow-rate fairness than
BBR, PCC, and Cubic. We also successfully reproduce the paper’s
claim that on real-world wired and cellular links in February of 2018
Copa achieves nearly as much throughput and 2-10 times lower
queuing delay as other congestion control schemes. However, our
results show that in the last 2 months Copa achieves significantly
lower throughput than most other schemes, and on in our fairness
experiments we observe that a single Copa flow uses only about
85% of a link’s full capacity. Accordingly, our results indicate that
further research is required to establish whether and in what con-
ditions Copa provides better performance than other congestion
control algorithms.

1 INTRODUCTION
The authors of Copa: Practical Delay-Based Congestion Control for
the Internet[2] suggest a new congestion control algorithm, Copa,
that they claim can simultaneously achieve high throughput, low
queuing delay, and flow rate fairness. The algorithm optimizes an
objection function that combines a flow’s average throughput and
packet delay:

U = log λ − δ logd
where λ is the throughput, d is the end-to-end packet delay, and
δ is a parameter that determines how much to weigh delay com-
pared with throughput. The authors set δ = 0.5. The authors show
that under a Markovian packet arrival model, the value of λ that
maximizesU is:

λ =
1

δ Ûdq

where dq is the mean per-packet queuing delay. This value of λ is
the target that Copa attempts to achieve by updating its sending
window and estimating the queuing delay. Specifically, on each ACK
arrival, Copa adjusts the congestion window, cwnd, as follows:

(1) Update an estimate of the queuing delay dq .
(2) Set λ = 1/(δ · dq).
(3) If cwd/RTTstanding ≤ λ, then increase the cwnd by v/(δ ∗

cwnd). Otherwise decrease cwnd by the same amount. Here
RTTstanding is the smallest RTT observed over a recent time
interval τ and v is the “velocity parameter”.

(4) Update v based on the number of consecutive times that
cwnd has changed in the same direction. This speeds up
convergence.

More detail on Copa’s update process can be seen in Figure 1.
Note that the bottleneck queue length oscillates around δ−1 packets.
As the queue length increases the so does dq , prompting a reduction

of cwnd. This in turn causes the queue to empty, reducing dq and
triggering an increase of cwnd.

The authors provide no explanation for their choice of objective
function and spend little time justifying their decision to set δ = 0.5
and their assumption of Markovian packet arrival. They argue that
that "[u]ltimately, our validation of the Copa algorithm is through
experiments." Accordingly, we attempted to verify two important
experimental results from [2], namely the following:

• Copa outperforms other congestion control algorithms on
real-world networks on cellular and wired links by achieving
nearly as much throughput and 2-10 times lower queuing
delay; and

• Copa maintains nearly full link utilization with a median
Jain fairness index of 0.93. The median indices for Cubic,
BBR and PCC are 0.90, 0.73 and 0.60 respectively.

We chose to reproduce these particular experimental results because
they are central to the authors’ claims that Copa achieves high
throughput, low queuing delay, and flow rate fairness.

Evaluating these claims entails reproducing Figures 4 and 5 from
the original paper. To reproduce the real-world network traffic
experiment, we analyzed data from the Stanford Congestion Control
Pantheon [4] during the time when the authors did their research
and in the past two months. We found that Copa did outperform
other congestion control algorithm on cellular and wired networks
at the time when the authors conducted their research but that
in the last few months Copa achieves much lower throughput
than most other algorithms on wired links. To reproduce the Jain
Fairness Index we used an Mininet emulated link with the same
characteristics as those used by the authors. We used the authors’
implementation of Copa to run the same fairness experiment. Our
results show that Copa achieves a median Jain index of 0.97, Cubic
a median of 0.88, BBR a median of 0.61, and PCC a median of 0.81.
1

2 PRIORWORK
Three decades of congestion control research have given rise to
many types of congestion control schemes. The original end-to-end
congestion control algorithm in TCP uses packet loss as its conges-
tion control signal, as did many schemes that followed it. Because
these algorithms fill up network buffers, they achieve high through-
put at the expense of high queuing delay. To address this problem,
a separate thread of research approximates delay and uses this as
a signal for congestion control. This branch of research includes
such protocols as Vegas[6] and FAST[3]. However, network jitter
and ACK compression can cause overestimates of the delay, result-
ing in under-utilized links. As a result, newer congestion control

1The code we used to run our reproduction is available at https://github.com/
nadinelyab/Copa_Reproduction.

1

https://github.com/nadinelyab/Copa_Reproduction.
https://github.com/nadinelyab/Copa_Reproduction.

, 2019 Sawyer Birnbaum, Nadin El-Yabroudi

Figure 1: One Copa cycle: Evolution of queue length with
time. This is Figure 1 of [2]

schemes are often specialized to a particular type of network or use-
case, such as cellular networks[5, 13], datacenters [7, 8], or video
streaming[11, 14]. Other new congestion control algorithms (e.g.,
Remy [1, 12], PCC[10], and PCC Vivace[9]) argue that the space
of congestion control signals and actions is too complicated for
human engineering, and instead apply online learning to develop
policies for responding to the current observed network behavior.
These newer schemes either trade interpretability for performance
or specialize in achieving the metrics necessary for their intended
application area.

Copa [2] belongs to the line of algorithms that use an estimate of
delay to update the congestion window and modulate the sending
rate. One of the weaknesses of these schemes is that they do not
interact well with loss-based protocols when both exist on a net-
work. The delay-based algorithms tend to be less aggressive. Copa
attempts to solve this problem by detecting the presence of buffer-
fillers and changing the δ parameter in the presence of such flows
so that it also applies an additive-increase/multiplicative-decrease
approach. Furthermore, unlike newer schemes, Copa aims to be
practical meaning that it can be used in many environments includ-
ing cellular and wired links and it is relatively simple to understand
compared with online learning schemes.

3 EXPERIMENTS
3.1 Pantheon
The authors of Copa submitted their implementation of Copa to Pan-
theon [4] to compare Copa with other congestion control schemes
on real-world Ethernet and cellular links. They plotted the aver-
aged normalized throughput and average queuing delay for each
congestion control algorithm. The average normalized throughput
is measured by normalizing relative to the flow with the highest
throughput for one experiment and then averaging across all runs
and flows in that experiment. The average queuing delay is calcu-
lated by subtracting the minimum delay for a flow from all other
delay measurements in that flow. The experiments chosen from
Pantheon [4] each last 30 seconds. Half of them only had one flow,
and the other half had three flows each starting at 0, 10, and 20
seconds from the start of the experiment. Figure 2 shows the results
in [2].

For our reproduction, we analyzed results from Pantheon [4]
at the time when the authors ran their experiments as well as in
March and April of 2019. We reached out to the authors and learned
they used data from before February 21st, 2018 and after February
19th, 2018. Therefore, we used data from Pantheon from February
20th, 2018 which represented five different countries. The authors
claim to use data from six different countries but we found that no
experiments for one country were available in the dates provided
to us. This left us with 15 experiments for wired links. Additionally,
there were no results from cellular links between February 20th
and 21st on Pantheon, so we chose 32 cellular experiments from
before February 19th. We then chose the 40 wired link experiments
between March 26th and April 24th of 2019 and the 34 cellular links
between January 21st and April 23rd of 2019 that were available
on Pantheon to see if Copa still performed better than other con-
gestion control algorithms. We wrote our own scripts which used
the packet-by-packet log files available on Pantheon to calculate
the average queuing delay as described in [2] and we used the
summarized results given in Pantheon to calculate the normalized
throughput for each experiment.

3.2 Jain’s Fairness
Jain’s fairness index is a measure of the fairness of a resource
allocation scheme. The index is defined as follows, where xi denotes
the resources allocated to party i:

J(x1,x2, ...,xn) =

(∑n
i=1 xi

)2
n
∑n
i=1 x

2
i

(1)

In this context, xi represents the throughput of flow i . When all
flows receive the same throughput the index is maximized with a
value of 1. When one flow receives all of the throughput, the index
is minimized with a value of 1

n .
To compare the fairness of congestion control protocols, the

authors run the following experiment:
(1) Every second for 10 seconds, start flow fi .
(2) After 10 seconds, every second for 10 seconds end flow f10−i .

Thus, flow 1 runs for 20 seconds, flow 2 for 18 seconds, and so on.
The authors measure the throughput of each flow, compute the
Jain’s fairness index for every millisecond of the experiment, and
plot a CDF of the indices for four congestion control protocols:
Copa, Cubic, BBR, and PCC. They run the experiment over a 46
Mbit/s Mahimahi link with 20ms RTT and 1 BDP of buffer.

Figure 3 presents the results of the experiment. Copa is the fairest
protocol, followed by Cubic, BRR, and finally PCC. Copa achieves
a median Jain fairness index of 0.93 while Cubic, BBR and PCC
achieve median indices of 0.90, 0.73 and 0.60, respectively.

We reached out to the authors, and they shared with us their
scripts for running this experiment and plotting the data3; we used
these scripts as a basis for our reproduction. To create Copa flows,
the script uses the authors’ GenericCC4 implementation of their
algorithm, and to create Cubic and BBR flows it uses the Linux ker-
nel implementations of those algorithms. We modified the provided
code in three ways. First, instead of Mahimahi, we use a Mininet

3https://github.com/venkatarun95/CopaEvaluation; see experiment-dynamic.sh
and pcap-tpt-graph.py
4https://github.com/venkatarun95/genericCC

2

CS 244 Project Report: Reproducing Copa , 2019

Figure 2: Original Real-World Experiments on Pantheon paths for 6 different countries. This was Figure 5 in [2]

Figure 3: Original CDF of the Jain Indices obtained in the
Copa Paper. This was Figure 4 in [2]. 2

emulator (with the same bandwidth, RTT, and buffer settings as
in the original experiment). Second, because the authors’ code for
establishing PCC flows referenced some files that they did not pro-
vide, we used the PCC developers’ implementation to run these
flow. (The Copa authors also used the PCC developers’ implemen-
tation.) And third, to resolve a bug we experienced while running
the authors’ plotting script, we modified two lines of that file. (We
explained these changes to the authors; they did not indicate that
these modifications would interfere with our visualization of the
results.)

4 RESULTS
4.1 Pantheon
After running our original experiments we found that for wired
links many congestion control algorithms were not achieving the
same results as [2]. Therefore, we reached out to the authors again
and learned that they had ignored flows for which the throughput
was greater than 120Mb/s since the Copa algorithm implementation
on Pantheon does not scale well to high throughput. We corrected
our scripts to ignore these flows and obtained results much closer
to the original paper. Figure 4 and 5, show the comparison of the
original results with the results of our reproduction for cellular and

wired links. Although there are differences, likely due to the fact
we do not know which exact experiments were used in producing
the original figure, the general claims of the paper hold. We find
that:

• For wired links, Copa achieves nearly as much throughput
as other schemes like BBR and about 3 times lower queuing
delay.

• For cellular links, Copa’s throughput is a lower than most
other congestion control algorithms but not by much. Copa’s
queuing delay is in some cases 30 times lower than other
congestion control algorithms. However LEDBAT performs
better than Copa, achieving more throughput and only a
fraction of higher queuing delay.

We were also curious to see if other congestion control algo-
rithms not present in the original Pantheon plot could outperform
Copa. Therefore, we ran the same experiments on all congestion
control algorithms and present the results in Table 1. We find that
for wired links Indigo achieves the highest throughput with a delay
only slightly higher than Copa, yet Indigo did not appear in [2]. For
cellular links LEDBAT achieves the best results with comparable
throughput to other schemes and 2-4 times better queuing delay.

For March and April of 2019 we found that the claims of the
paper do not hold. The results for these experiments are shown
in Figures ?? and 10. For wired links, Copa achieves significantly
lower throughput than all congestion control algorithms except
Sprout. However, Copa does achieve queuing delay 2-10 times lower
than other congestion control algorithms. For cellular links, Copa’s
throughput is more comparable to other congestion control schemes
but it is still lower than most others. Copa’s delay is still 2-10 times
lower than other congestion control algorithms. This is likely due
to several factors such as changes in network behavior over the
past year or changes in Pantheon such as the implementation and
availability of other congestion control algorithms as well as the
addition of a new node in Saudi Arabia.

3

, 2019 Sawyer Birnbaum, Nadin El-Yabroudi

Scheme Wired Links Cellular Links
Throughput Delay Throughput Delay

Copa 0.702 4.27 0.410 70.75
Fillp 0.798 16.10 0.680 2721
QUIC 0.648 11.17 0.660 818.7
Sprout 0.312 3.455 0.220 40.30

Vivace Latency 0.608 2.441 0.440 1808
Vivace Loss 0.655 11.25 0.615 1981
Vivace LTE 0.669 7.01 0.563 1845
SCREAM 0.003176 0.450 0.066 20.47
Vegas 0.660 3.44 0.494 334.9
BBR 0.741 13.47 0.664 360.6
Verus 0.601 12.92 0.626 473.6
PCC 0.626 6.194 0.501 2401
Indigo 0.758 5.120 0.346 48.31

WebRTC 0.0226 1.377 0.195 120.7
Taova 0.701 8.159 0.537 285.3

LEDBAT 0.538 6.194 0.579 83.24
Table 1: Reproduction results for all congestion control algo-
rithms in Pantheon February 2018. Delay is in milliseconds
and throughput in Mbit/s.

4.2 Jain Fairness
Figure 6 presents the results of our fairness experiment. In keeping
with the authors’ findings, we observe that Copa is the fairest algo-
rithm, followed by Cubic. However, in contrast with the original
results, we find that PCC is a significantly fairer protocol than BBR.
The authors speculate that this stems from improvements to the
PCC algorithm made since the the original experiment was run. Ad-
ditionally, excepting PCC, the Jain indices we observe vary slightly
for Copa and Cubic and significantly for BBR. In our experiment,
Copa achieves a median Jain index of 0.97, Cubic a median of 0.88,
BBR an median of 0.61, and PCC a median of 0.81. For Copa and
Cubic, this constitutes an increase of 0.03 and a decrease of 0.02
over the median values in the original paper, respectively. For BBR,
this constitutes 0.12 decrease over the original median value. We
reached out to the authors about these differences; they noted that
our results are qualitatively similar to the original ones. It possible
that the difference in BBR fairness stems from changes to the Linux
Kernel implementation of BBR, although it would be somewhat
surprising if those changes made the algorithm less fair.

Figure 11 (see appendix) displays the throughput of each flow.
As expected, the Copa flows clearly exhibit the most fair behavior.

We noticed that for some of the congestion control protocols,
namely Cubic and BBR, flows do not start and end in exactly 1
second intervals, perhaps because of some delays in the iperf
program used to establish these flows or in the kernel implementa-
tions of these protocols. Accordingly, we ran another experiment
in which we increased the inter-flow time (i.e., the time between
consecutive flow starts and flow ends) from 1 second to 5 seconds.
By spacing the flows farther apart, we reasoned that the variance in
exact flow start and end times would matter less. Figure 7 presents
the results of this experiment. Overall, the results are consistent
with those form the earlier experiment, with the exceptions that the

PCC protocol now slightly edges out the Cubic protocol and that
the BBR algorithm preforms much better. The median indices are
0.98 for Copa, 0.90 for Cubic, 0.81 for BBR, and 0.94 for PCC. (See
Figure 7 in the appendix for throughput plots for this experiment;
unlike in the original experiment, Cubic and BBR flows enter and
exit at approximately the correct interval.)

To verify that the paper’s results do not depend on the spe-
cific conditions of the emulated link, we also experimented with
modifying the link’s bandwidth, RTT, and queue size. Additionally,
we collected data using the Reno and Vegas congestion control
algorithms. Although the performance of some congestion con-
trol protocols varied in these tests, Copa consistently achieved the
fairest behavior. See Figure 13 in the appendix for the results of a
some of these experiments.

4.3 Throughput
In the process of running the Jain fairness experiment, we noticed
that even when a single Copa flow is running, it does not use 100%
of the link bandwidth. Although the link supports 46 Mbits/second,
during the 1st second of the experiment, the lone Copa flow runs
at only about 35 Mbits/second. Moreover, we continue to observe
this behavior on the 5 second inter-flow test, which should provide
the single flow enough time to reach an equilibrium state. In con-
trast, individual flows using the other protocols do achieve the max
throughput.

To investigate further, we ran a single Copa flow over the 46
Mbit/second flow for 10 seconds. Figure 8 displays the throughput
of this flow. As in the fairness experiments, it does not utilize the
full throughput of the link. The authors speculate that perhaps
some difference between the Mininet and Mahimahi emulators
is responsible for the sub-100% link utilization. They also note
(without elaboration) that their GenericCC implementation of Copa
does not scale well to high throughputs, but that their Linux Kernel
implementation of the algorithm does.

5 DISCUSSION
5.1 Implications of Findings
Our findings provide a mixed picture of Copa effectiveness: while
we find that the Figures from the original paper can be reproduced
with reasonable accuracy and that Copa consistently behaves more
fairly than other congestion control algorithms, we also observe
that in many cases Copa achieves a low throughput compared with
these alternatives. In our reproduction of the Pantheon results at
approximately the same time that the authors conducted the origi-
nal experiment, we record small but meaningful differences in the
average delay and throughput of almost every protocol. However,
it seems reasonable that that these differences stem from the fact
that we do not know exactly which links and what dates were use
in original experiment. Moreover, the relative performance of the
protocols remains essentially uncharged in our reproduction, so the
differences we observe do not undermine the authors’ conclusions
about Copa’s performance.

In contrast, when we reran our analysis on data from the past
few months, we found that Copa’s relative performance has deterio-
rated, especially with regards to its throughput on wired networks.
Thus, our results indicate that authors’ findings are specific only

4

CS 244 Project Report: Reproducing Copa , 2019

Figure 4: Comparison of original results from [2] and our
reproduction for wired links in February of 2018. The la-
bel represent the data point in [2]. Each point is connected
by a line to the point data point of our reproduction. Some
congestion control algorithms like Remy and Cubic are not
shown because the information was not available on Pan-
theon.

Figure 5: Comparison of original results from [2] and our
reproduction for cellular links in February of 2018. The la-
bel represent the data point in [2]. Each point is connected
by a line to the point data point of our reproduction. Some
congestion control algorithms like Remy and Cubic are not
shown because the information was not available on Pan-
theon.

to the network conditions present at the time of their experiment.
Future work is required to establish whether the original or new
results are more indicative of Copa’s potential. (See Future Works
section.)

Our reproduction of the Jain fairness experiment support the
authors’ position that Copa is fairer than many other popular con-
gestion control protocols. Except for PCC, the results in our direct

Figure 6: Our reproduction of plot of Jain Indices CDF ob-
tained in the Copa Paper. Note that the CDF is over 1 ms
intervals in the experiment.

replication of the experiment in the paper line up reasonably well
with the original data. For Copa, Cubic, and (to a lesser extent)
BBR, we recorded median Jain index values that differed from the
ones in the paper by only a few hundredths, and these difference
seem reasonable given our use of a different emulator which might
process and send packets at a slightly different rate than the one
used by the authors. The larger difference we observed in the per-
formance of the PCC algorithm also makes sense given that we
used a more recent version of PCC. Moreover, we found that Copa
continues to outperform the other algorithms under a variety of
experimental conditions, including with a different inter-flow time
and with a different link bandwidth, RTT, and queue size. Copa also
consistently outperforms the Vegas and Reno protocols. Overall,
these findings provide strong support for the authors’ claim that
Copa is a very RTT-fair algorithm.

However, in the process of conducting the fairness experiment,
we noticed that a single Copa flow does not use 100% of the link
bandwidth, and in fact uses only about 85% of the available capacity.
(Interestingly, in the authors’ description of the fairness experiment,
they note that Copa “maintains nearly full link utilization.” Italics
added.) This seriously undermines the authors’ finding that Copa
achieves comparable throughput to other congestion control algo-
rithms. It also raises questions about the reproducibility of some
of the other experiments in the paper which show Copa using the
entire link capacity. (See the Future Work section for more details.)

Overall, our findings suggest that Copa provides lower delay
and better flow-rate fairness than other congestion control pro-
tocols, but that this comes at the cost of reduced throughput. It
is possible that changing the δ parameter in favor of throughput
maximization could alter this balance and allow Copa to achieve
better throughput (see Future Work section). Regardless, however,
our findings indicate that optimizing Copa’s performance requires
careful tuning of this parameter and suggest that Copa is not an
ideal congestion control algorithm under some reasonably common
network conditions.

5

, 2019 Sawyer Birnbaum, Nadin El-Yabroudi

5.2 Limitations and Weaknesses
Limited Information about Pantheon Experiment Data. The Copa

paper does not specify the dates or Pantheon links used to collect
throughput and delay information for Figure 5. We contacted the
authors for more information, but they were unable to provide us
with list of the exact dates and links they used. They did inform us
the they collected data between February 20 and 21, 2018 and that
they did not use any links with a max throughput above 120 Mbit/s.
We were also not able to obtain the raw data points for the original
Pantheon graphs. Therefore, we attempted to estimate their values
from the figure in order to compare these results with our own.

Mahimahi Emulator. The original fairness experiment ran on a
Mahimahi emulator. We attempted to use a Mahimahi emulator but
experienced difficulties configuring the emulator with the band-
width, RTT, and queue settings used by the authors. Accordingly,
we switched to a Mininet emulator. In theory, the results should
not be affected by our choice of emulator.

6 FUTUREWORK
With more time, we could continue to explore the conditions under
which Copa achieves higher throughput, lower delay, and fairer be-
havior compared with other congestion control protocols and could
study the extent to which Copa achieves the optimal sending rate
(according to its packet arrival modeling assumptions). Specifically,
we could run the following experiments:

(1) Investigate Copa’s throughput to better understand why the
algorithm sometimes uses less than 100% of the available
bandwidth. This could involve reproducing Figure 7 from
the original paper, which indicates that Copa does achieve
max throughput when running on a 12 Mbit/s link.

(2) Explore Copa’s fairness in a more complex environment
with flows running different congestion control algorithms.
Specifically, we could reproduce Figure 10 from the original
paper, which presents the results of an experiment in which
the authors run Copa flows alongside Cubic flows.

(3) Measure the affect of altering the δ parameter. The authors
set δ to 0.5; it would be interesting to observe how through-
put and delay across an emulated link change as this param-
eter varies.

(4) Investigate how closely Copamatches the target sending rate
λ. To do so, we could measure the the per-packet queuing
delay dq for a Copa flow running on an emulated link and
measure the λ chosen by Copa based on its estimation of
dq . This would test the effectiveness of Copa’s dq estimation
algorithm and window update strategy.

(5) Analyze Pantheon data across a longer time interval and
track the performance of Copa on a weekly or monthly basis.
We could also compare Copa’s performance across Pantheon
links and determine the link qualities that correlate with
better performance of the algorithm.

A more ambitious goal would be to make small changes to the
utility function (e.g., letU = λ + δd), solve for the optimal λ given
a Markovian packet arrival, and measure the extent to which these
changes affect algorithm’s performance.

7 CONCLUSION
We reproduced several key experiments in Copa: Practical Delay-
Based Congestion Control. We found that at the time when Copa was
created in February of 2018, it outperformed other congestion con-
trol algorithms on both wired and cellular real-world networks. We
also found that Copa consistently achieves a higher Jain Fairness
index than PCC, BBR, and Cubic across a range of link conditions.
However, in data from the past 2 months, we observed that Copa
achieves significantly lower throughput that most other schemes
on wired links, and we observe that a lone Copa flow does not
achieve full utilization of a link’s capacity. Thus, our results suggest
that Copa does fulfill the author’s goal of designing a congestion
control protocol capable of simultaneously providing high through-
put, low delay, and flow-rate fairness. Future work should study
the conditions under which Copa’s throughput deteriorates and
investigate whether the utility function chosen by the authors is
the correct objective to maximize.

REFERENCES
[1] P. Thaker A. Sivaraman, K. Winstein and H. Balakrishnan. [n. d.]. An Experi-

mental Study of the Learnability of Congestion Control. ([n. d.]).
[2] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-Based Conges-

tion Control for the Internet. 15th USENIX Symposium on Networked Systems
Design and Implementation (2018).

[3] S. Low D. Wei, C. Jin and S. Hegde. [n. d.]. FAST TCP: Motivation, Architecture,
Algorithms, Performance. ([n. d.]).

[4] R. S. Wahby Levis F. Y. Yan J. Ma G. Hill, D. Raghavan and K. Winstein. [n. d.].
Pantheon: the training ground for internet congestion-control research. ([n. d.]).

[5] A. Sivararaman K. Winstein and K. Balakrishnan. [n. d.]. Stochastic Forecasts
Achieve High Throughput and Low Delay over Cellular Networks. ([n. d.]).

[6] S. W. O’Malley L. S. Brakmo and L. L. Peterson. [n. d.]. TCP Vegas: New Tech-
niques for Congestion Detection and Avoidance. ([n. d.]).

[7] D. A. Maltz J. Padhye P. Patel B. Prabhakar S. Sengupta M. Alizadeh, A. Greenberg
and M. Sridharan. [n. d.]. Data Center TCP (DCTCP). ([n. d.]).

[8] T. Edsall B. Prabhakar A. Vahdat M. Alizadeh, A. Kabbani and M. Yasuda. [n.
d.]. Less is More: Trading a Little Bandwidth for Ultra-low Latency in the Data
Center. ([n. d.]).

[9] D. Zarchy E. Arslan Y. Gilad B. Godfrey M. Dong, T. Meng and M. Schapira. [n.
d.]. Pcc vivace: Online-learning congestion control. ([n. d.]).

[10] D. Zarchy P. B. Godfrey M. Dong, Q. Li and M. Schapira. [n. d.]. PCC: Re-
architecting Congestion Control for Consistent High Performance. ([n. d.]).

[11] A. Jain M. Ghobadi, Y. Cheng andM.Mathis. [n. d.]. Trickle: Rate limiting youtube
video streaming. ([n. d.]).

[12] K. Winstein and H. Balakrishnan. [n. d.]. TCP ex Machina: Computer-Generated
Congestion Control. ([n. d.]).

[13] J. Chen L. Subramanian Y. Zaki, T. Potsch and C. Gorg. [n. d.]. Adaptive congestion
control for unpredictable cellular networks. ([n. d.]).

[14] J. Gahm R. Pan H. Hu A. Began Z. Li, X. Zhu and D. Oran. [n. d.]. Probe and
adapt: Rate adaptation for HTTP video streaming at scale. ([n. d.]).

8 APPENDIX: ADDITONAL FIGURES

6

CS 244 Project Report: Reproducing Copa , 2019

Figure 7: CDF of the Jain Indices obtained with a 5 second
inter-flow time.

Figure 8: Throughput of a single Copa flow running on a 46
Mbit/second link. Note that the flow does not use the full
capacity of the link.

Figure 9: Comparison of original results from [2] and our re-
production for cellular links from January to April of 2019.
The label represent the data point in [2]. Each point is con-
nected by a line to the point data point of our reproduction.
Some congestion control algorithms like Vivace LTE and Vi-
vace Loss are not shown because they do not exist in Pan-
theon anymore.

Figure 10: Comparison of original results from [2] and our
reproduction forwired links inMarch andApril of 2019. The
label represent the data point in [2]. Each point is connected
by a line to the point data point of our reproduction. Some
congestion control algorithms like Vivace LTE and Vivace
Loss are not shown because they do not exist in Pantheon
anymore.

7

, 2019 Sawyer Birnbaum, Nadin El-Yabroudi

Figure 11: Flow throughputs in our reproduction of the Jain fairness experiment. The Copa flows behave the fairest. Top Left:
Copa | Top Right: Cubic | Bottom Left: BBR | Bottom Right: PCC

8

CS 244 Project Report: Reproducing Copa , 2019

Figure 12: Flow throughputs in our reproduction of the Jain fairness experiment with a 5 second inter-flow time. Note that
now the Cubic and BBR flows begin and end at approximately the correct times. Top Left: Copa | Top Right: Cubic | Bottom Left:
BBR | Bottom Right: PCC

Figure 13: CDFs of Jain indices from experiments with different link parameters. Copa is consistently the fairest algorithm.
Left: 96 Mbit/s bandwidth | Center: 40 ms RTT | Right: 2 BDP queue size

9

	Abstract
	1 Introduction
	2 Prior Work
	3 Experiments
	3.1 Pantheon
	3.2 Jain's Fairness

	4 Results
	4.1 Pantheon
	4.2 Jain Fairness
	4.3 Throughput

	5 Discussion
	5.1 Implications of Findings
	5.2 Limitations and Weaknesses

	6 Future Work
	7 Conclusion
	References
	8 Appendix: Additonal Figures

