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ABSTRACT
AWStream (Adaptive Wide-Area Streaming Analytics) [7]
is a framework for streaming data analytics applications to
smartly trade off between latency and application perfor-
mance in the face of limited network bandwidth. It aims to
simplify application development by providing an interface
through which developers can specify configuration “knobs”
that control how data is degraded when bandwidth is con-
strained. AWStream learns the best performing configuration
for a given available bandwidth, and uses that to adjust the
data send rate when it detects congestion in the network.

We present our efforts to reproduce Figure 12(a) from the
original AWStream paper, which compares latency and accu-
racy for a pedestrian detection application both running with
and without AWStream. We also show our reproduction of
two intermediate results, including an offline-trained profile
and a time series plot for throughput, latency and accuracy.

1 INTRODUCTION
Streaming data analytics applications have become increas-
ingly pervasive in recent years: real-time log processing,
pedestrian detection and vehicle tracking for surveillance
camera footage, and Internet of Things (IoT) data analytics
are all examples of applications that often require data to be
streamed from a source to a remote analytics server. When
data sources are numerous and widely distributed, the most
cost-effective solution is to stream data over a wide-area
network (WAN) such as the public Internet. In many cases
(IoT devices, surveillance cameras) a wireless link is used for
the last hop.

1.1 Problem Background
The main challenge that this architecture presents for ap-
plications is that WAN bandwidth is variable, scarce, and
expensive. Bandwidth variability and scarcity stems from
the fact that a data stream shares the network with many
other flows, all of which are non-deterministic in terms of
arrival, length, and bandwidth consumption. Wireless links
over the last hop also contribute to scarcity. Furthermore,
data center operators often charge more for wide-area band-
width between two sites. Applications relying on low-latency
between data sources and servers must therefore properly
detect and deal with congestion.

Adaptive streaming applications aim to solve this problem
by dynamically trading off accuracy for less bandwidth con-
sumption during periods of congestion. The client follows
some policy that determines how to degrade the data in order
to reduce the send rate. In practice, many streaming appli-
cations utilize manual policies; for example, a surveillance
system for pedestrian detection may have a policy stipulat-
ing that frame rate be reduced by 1/3 when latency exceeds
a certain threshold. Zhang et al. discuss three issues with the
policy-based approach:

• Policies are application-specific and do not generalize.
For example, reducing the frame ratemay be one policy
for video-based streaming applications, but does not
apply to non-video applications such as streaming log
analysis.

• Policies are oftenwritten by developers based on heuris-
tics, rather than driven by evaluation metrics, and
therefore are often suboptimal.

• Specifying policies manually is tedious, error-prone,
and therefore not scalable.

1.2 AWStream’s Contribution
AWStream is a framework with three modes of execution
(profiling, client, and server) that work in tandem to alleviate
each of these challenges for applications:

• AWStream features a generic maybe API to interface
with any kind of streaming application. Developers
specify a set of degradation functions with parameters
(“knobs”) that AWStream can tune when generating
adaptive policies.

• AWStream generates adaptive strategies via a data-
driven approach by employing a combination of offline
and online profiling to learn a Pareto-optimal policy
for when and how to degrade data.

• AWStream client detects congestion and adapts the
send rate accordingly by following the learned policy.

The authors evaluated AWStream by comparing latency
and application accuracy results for an application with no
adaptation (using TCP and UDP as transport protocol), as
well as various adaptive approaches (JetStream, JetStream++,
HTTP Live Streaming, and AWStream). The authors imple-
mented a pedestrian detection application which uses a GPU-
accelerated histogram of oriented gradients algorithm with
an SVM classifier to output bounding boxes with normalized
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Figure 1: Figure 12(a) from the original AWStream pa-
per. The box plot shows latency and accuracy for the
pedestrian detection application during a period of
240 seconds when bandwidth is constrained. When
run with AWStream, the application has much lower
latency and only a small reduction in accuracy when
compared with streaming over TCP (no client-side
adaptation).

coordinates on the image. The outputs are compared against
the reference result from the raw data, and declared a success
if the intersection over union (IOU) of the bounding boxes is
greater than 50%.
Figure 1 shows the results for a pedestrian detection ap-

plication when bandwidth is constrained at the client using
the Linux tc utility. It can be seen that AWStream achieves
sub-second latency with only a small reduction in accuracy
when compared with streaming the raw data over TCP.

Using the AWStream code on Github1, we attempt to re-
produce Figure 1. We run the same pedestrian detection
application as the original authors and use the same dataset
(MOT16 [3]) for offline profiling and evaluation. We run our
client and server in separate regions in Google Cloud Plat-
form (the original authors used Amazon Web Services) with
Linux tc to constrain bandwidth at the clients.
In the next section we discuss related work. Then, we

describe our reproduction efforts in detail, including setup,
methodology, results, and future work.

2 RELATEDWORK
Streaming analytics systems. JetStream [5] is a wide-area
streaming system that Zhang et al. compare with AWStream.
JetStream has a policy framework that allows developers to
formulate policies for sending data at a rate that maximizes
value (e.g. accuracy). Compared to JetStream, AWStream
has the advantages we mentioned in Section 1.2, as well
as the support for different resource allocation policies for
multiple applications. In addition, [7] shows that AWStream
achieves a lower latency when evaluated against JetStream
for two video applications, augmented reality and pedestrian
detection.

Multimedia streaming systems. For two video-based
applications, Zhang et al. also compared AWStream against

1github.com/awstream/awstream

a few multimedia streaming protocols including RTP [6] and
HLS [4] (an HTTP-based protocol focused on optimizing
adaptation strategies for quality of experience). As the AW-
Stream authors argue, RTP only aims to achieve low latency
often at the expense of very poor accuracy; HLS adaptation
reacts slowly to changing network conditions, and its strat-
egy is often suboptimal for applications such as pedestrian
detection relying on image detail.

Salsify [1] is an architecture for adaptive video streaming
that tightly couples the network transport protocol with the
video codec. The system aims to encode each frame near and
below a target size which is dynamically estimated by ob-
serving network conditions. While Salsify aims to optimize
for low latency and high SSIM (structural similarity), AW-
Stream (through its offline/online profiling process) attempts
to maximize an application-specific metric, such as accuracy
in a pedestrian detection application.

3 EXPERIMENT
3.1 Setup and Methodology
Our environment consisted of two nodes provisioned in
Google Cloud Platform: a server in Belgium and a client
in Oregon, USA. We forked2 the AWStream GitHub reposi-
tory, which hadn’t been significantly updated in over a year.
We made various patches to the Rust code and helper scripts
to accommodate API changes in the dependencies. We also
modified hard-coded configurations and logic specific to the
computing environment, application, and source data.
After resolving all build and runtime errors, we reverse-

engineered the steps needed to generate a profile from the
pedestrian detection dataset. We subsequently ran an AW-
Stream client and server tomeasure runtime latency, through-
put, and accuracy. The project’s documentation provided a
rough outline on how to achieve this, but overall we found
it to be outdated and at times misleading. We relied mostly
on close reading of the code and email correspondence with
the original paper’s authors for guidance.

3.2 Reproduction Steps
Offline profiling. The goal of profiling is to find the op-
timal configuration for each available bandwidth for some
spectrum of bandwidths. To find the Pareto-optimal profile,
we ran AWStream in profiling mode (a series of binaries) on
the MOT-16-04 dataset to record bandwidth and application
accuracy for every combination of knobs. In this case, knobs
include video frame rate, frame width, and quantization (an
H.264 parameter3). Using an Ubuntu VM with one Nvidia
K80 GPU on a 35 second (1050 frame) video, this step took
about four hours. From there, we used the provided code
2Fork available at: bitbucket.org/peiqian/cs244-awstream
3https://www.vcodex.com/h264avc-4x4-transform-and-quantization/
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to calculate summary statistics over time intervals and de-
termine the profile. This step produced Figure 4, which is
discussed in Section 4.

Streaming across theWAN. Rather than encoding video
on the client, streaming it across the network, and running
the pedestrian detection histogram of oriented gradients
algorithm on the server, the AWStream client and server
code runs a simulation. The client accepts a source.csv file
that contains, for each of the Pareto-optimal configurations
in the profile, the size of the data to be sent at each frame.
At runtime, the client adaptation code measures the avail-
able bandwidth (as described in the original paper), selects
the configuration to use, and sends an appropriately-sized
“dummy frame” (a stream of zeroes of the desired size in terms
of the number of bytes) across the network, along with the
configuration itself. Upon receiving a “dummy frame”, the
server uses the same configuration to look up the application
accuracy for that frame based on precomputed statistics.

We wrote a script to generate source.csv (as it is missing
in the original repository), and ran both the client and server
for ten minutes using the Linux tool tc to restrict bandwidth
at the client in the same manner as the original paper: no
shaping before t=200s; at t=200s limit bandwidth to 7.5 Mbps
for 3 minutes; at t=380s limit bandwidth to 5 Mbps; at t=440s
remove all shaping.
We also ran the client with no adaptations to reproduce

the “streaming with TCP” box plot in the original Figure
12(a). Since sending raw data requires around 238 Mbps
bandwidth, we send frames with H.264 quantization level
equal to 10, which only requires about 72 Mbps throughput
(our estimated network bandwidth on Google Cloud between
our server and client nodes was about 150 Mbps). In the
original paper, the authors set quantization level equal to
20, which required 17 Mbps bandwidth (they had imposed a
background bandwidth upper limit of 25 Mbps).

4 RESULTS
Figure 4 is a plot of the profile we generated for MOT-16-04
using the steps outlined in Section 3. Each tick on the plot
represents one of the 216 possible configurations (unique
combination of knobs). Highlighted are the Pareto boundary
as well as the configurations in which only a single knob
is modified. It’s nearly identical to Figure 3, the profile plot
from the original paper. This is to be expected, but provides
a good intermediate sanity check, which was useful given
the difficulties we ran into running the code.

Figure 2 shows our reproduction of Figure 12(a) from the
original paper (Figure 1). Latency results are quite similar:
AWStream is able to adapt to the imposed bottleneck by
detecting congestion and lowering the data rate. As a result,
latency is relatively low since it only sends a quantity of

data that can fit in the pipe. Unsurprisingly, latency for plain
TCP balloons to well over 10 seconds in both cases because
it attempts to send raw, uncompressed frames through a
bandwidth-restricted network. Our latency is slightly higher
(never dips below 100ms) which can probably be explained
by the fact that our client-server setup sends from Belgium
to Oregon, while the original setup sends from the east coast
of the United States to the west coast.
Accuracy results hold true as well. In both cases, the F1

score when running with AWStream hovers around 80%.
Although we’d expect TCP accuracy to be higher in our re-
production because we used a quantization level of 10 rather
than 20, the results appear to be the same. We cannot ex-
plain why this is the case, but we noticed that the AWStream
reference data available on GitHub suggests that TCP accu-
racy should be closer to 0.89.4 while in Figure 1 the accuracy
appears to be well above 0.9.
We also produced a time series plot showing through-

put, latency, and accuracy (Figure 6). We can clearly see
the period when traffic shaping occurs from 200s to 440s.
TCP throughput drops while the latency jumps, which is
expected. However, we do not observe AWStream taking
full advantage of the available capacity. This is surprising,
because AWStream is supposed to probe for additional net-
work capacity and increase the data quality when bandwidth
becomes available. We see this starting to occur in the blue
spike at the beginning of the throughput plot, but it drops
off shortly after. One possible explanation is that AWStream
detected congestion, scaled back the data rate, and never
recovered for some reason. We observed this behavior for
several runs, which suggests there could be a bug in the
adaptation code, but the results are inconclusive. For com-
parison, we also provide Figure 5, which is a time series
plot from the original paper for the augmented reality ap-
plication. A time series plot for pedestrian detection wasn’t
provided so we can’t make a direct comparison, but we do
see similar patterns for latency and accuracy between the
two applications.

Overall, we found that the results from the original paper
are reproducible. The profile plots are nearly identical, which
is to be expected because there is little to no non-determinism
involved in profile generation. More importantly, the AW-
Stream code performs close enough to the paper’s description
to reasonably reproduce the results of the original paper for
the latency and accuracy and box plots, with some caveats as
described above. What is less clear to us is how AWStream,
when used for video streaming-based applications, compares
to existing video streaming systems which are unaware of

4https://github.com/awstream/data/blob/master/reference-
data/mot.tcp.csv



CS244, Advanced Topics in Networking, Spring 2019 Eric Prokop and Peiqian Li

Latency (ms) Accuracy (F1 score)

100 1000 10000 0.8 0.85 0.9 0.95

Streaming over TCP

AWStream

Figure 2: Our reproduction of Figure 12(a).
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Figure 3: The original profile plot.
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Figure 4: Our reproduction of the profile plot.

the particular application running on top. We discuss this
more in the next section.

5 DISCUSSION AND FUTUREWORK
In the original paper, the authors compare AWStream to five
other approaches to sending data across a network: HTTP
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Figure 5: The original paper’s time series plot for an
augmented reality application.
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Figure 6: Our time series plot for a pedestrian detec-
tion application.

Live Streaming, plain TCP, plain UDP, JetStream, and Jet-
Stream++. Of these, we believe only JetStream can be consid-
ered a fair comparison: HTTP Live Streaming with 1 second
chunks doesn’t have low enough latency; plain TCP with
no adaptation sending data at a rate higher than the net-
work can handle will naturally cause network congestion;
UDP with no congestion control isn’t a realistic approach if
one is concerned about packet loss, and is frowned upon by
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IETF[2]; JetStream++ is JetStream using the profile generated
by AWStream, and isn’t an existing system.

Although AWStream is meant to be a general framework
for any real-time streaming analytics applications (not just
video streaming applications), it’s unclear if it actually per-
forms better than other video streaming systems which are
application-unaware (but are optimized for video), such as
WebRTC, Skype, Zoom, or, more recently, Salsify[1]. It would
be interesting to compare performance for various video-
based applications using AWStream vs. one of these existing
frameworks. We intended to compare AWStream against
WebRTC for the pedestrian detection application, but were
unable to finish the implementation before our deadline.

6 CONCLUSION
The original paper’s authors presented AWStream as a soft-
ware framework with an innovative, well-defined API for
developers of real-time streaming analytics applications to
smartly trade off between latency and throughput. Its goals
were two-fold: provide a boost to application performance
by learning an optimal profile, and make developers’ lives
easier.

Wewere able to successfully reproduce partial results from
the paper around application performance: AWStream learns
a profile based on training data and uses it perform real-time
adaptation. For applications that care about latency, AW-
Stream presents a clear improvement over plain CUBIC TCP
when streaming across bandwidth-constrained networks.
Unfortunately, we were not able to determine if AWStream
performs better than any other video streaming systems
for video-based applications, since our deadline arrived be-
fore we were able to finish implementing a comparison with
WebRTC.

Although AWStream is presented as a library to be used
by streaming applications, we found that the current Rust im-
plementation doesn’t quite realize this vision. The code base
is coupled to the application simulation code used to produce

the results for the original paper, and required patches to
build and run. Areas for future work include more easily
enabling integration with external applications and compar-
ing AWStream with other existing video streaming systems
to more concretely measure its benefit to video streaming
applications specifically.
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